Highly Regio- and Stereoselective Cocyclotrimerization and Linear Cotrimerization of $\alpha_{\wedge} \beta$-Unsaturated Carbonyl Compounds with Alkynes Catalyzed by Nickel Complexes

Thota Sambaiah, Lih-Ping Li, Daw-J en Huang, Cheng-Hong Lin, Dinesh Kumar Rayabarapu, and Chien-Hong Cheng*
Department of Chemistry, National Tsing Hua University, Hsinchu, Tai wan 30043

Received J anuary 12, 1999

Abstract

Cyclic enones 2-cyclohexen-1-one (1a), 4,4-dimethyl-2-cyclohexen-1-one (1b), 2-cyclopenten-1-one (1c), and 2-cyclohepten-1-one (1d) react with octa-1,7-diyne (2) in THF in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathbf{I}_{2}$, ZnI_{2}, and Zn powder at $62^{\circ} \mathrm{C}$ to give [$2+2+2$] cycloaddition-dehydrogenation products $3 \mathrm{a}-\mathbf{d}$ in $32-80 \%$ yields. α, β-U nsaturated lactone 5 a (5,6 -dihydro-2H-pyran-2-one) undergoes [$2+2+2$] cycl oaddition with $\mathbf{2}$ to give both the corresponding cyclohexadiene product 6 (29%) and dehydrogenation product $\mathbf{7}$ (39\%). Under similar reaction conditions, 3 -buten- 2 -one reacts with $\mathbf{2}$ and various substituted hepta-1,6-diynes $9 \mathbf{a}-\mathbf{c}$ to give [2+2+2] cycloaddition-dehydrogenation products $\mathbf{1 1 a}-\mathbf{d}$ in $68-80 \%$ yields. Diphenylacetylene also reacts with $\mathbf{1 a} \mathbf{- d}, \mathbf{5 a}$, and $2(5 \mathrm{H})$-furanone ($\mathbf{5 b}$) to afford the corresponding $[2+2+2]$ cocyclotrimerization products $\mathbf{1 3 a}$-d and 14a-b. No dehydrogenation of products $\mathbf{1 3}$ and $\mathbf{1 4}$ was observed under the reaction and workup conditions. The reactions of acrylates with alkynes catalyzed by nickel complexes give products that depend greatly on the reaction conditions. Treating ethyl acrylate (15a) with 1-phenyl-1-propyne (16) in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ and Zn at $90^{\circ} \mathrm{C}$ in toluene affords cocyclotrimerization product 19a as the major product (54% yield). However, treatment of $\mathrm{CH}_{2} \mathrm{CHCOOR}$ ($\mathrm{R}=\mathrm{Et}$ and t - Bu) with mono al kynes 16 and 12 in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}$ and I$)$ and Zn powder in toluene at $60^{\circ} \mathrm{C}$ affords the corresponding conjugated trienes $\mathbf{1 7 a - c}$ in $82-92 \%$ yiel ds. The MS data of $\mathbf{1 7}$ firmly support an adduct of two molecules of alkyne and a molecule of acrylate. Similarly, the reaction of 15a with octa-1,7-diyne in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} 1_{2}, \mathrm{ZnI}_{2}$, and zinc gives triene derivative $\mathbf{2 1}$ in 68% yield. NOE and X-ray results indi cate that in these trienes the substituents from each alkyne and alkene moiety are cis to each other. The unique stereoselectivity can be attributed to the exclusive formation of seven-membered nickelacycloheptadiene intermediate $\mathbf{2 5}$ during the catalytic reaction.

Introduction

Metal-catalyzed cocyclotrimerization of unsaturated compounds with alkynes is a powerful synthetic method for the construction of polycyclic compounds. ${ }^{1-3}$ Cocyclotrimerization of aldehydes, ${ }^{4}$ carbon dioxide, ${ }^{5}$ and isocyanides ${ }^{6}$ with alkynes mediated by transition-metal complexes are known. Recently, we reported a nickelcatalyzed cocyclotrimerization of an oxa- or azabenzonorbornadiene or C_{60} fullerene with two alkynes to afford multiple-ring products. ${ }^{7}$ I keda et al. ${ }^{8}$ described the cocyclotrimerization of cyclic enones with mono alkynes

[^0]using $\mathrm{Ni}(\mathrm{acac})_{2} / \mathrm{PPh}_{3} / \mathrm{Al}(\mathrm{Me})_{3}$ as the catalyst system and cocyclotrimerization of 3-buten-2-one and 2-cycl ohexen-1-one with 1,6-heptadiynes catalyzed by $\mathrm{NiCl}_{2} / \mathrm{ZnCl}_{2} / \mathrm{Zn}$ to give $[2+2+2]$ cyclic products. In an independent study, ${ }^{9}$ we used $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{X}_{2} / \mathrm{Zn} /\left(\mathrm{ZnI}_{2}\right)$ as catalyst systems for cocyclotrimerization and linear cotrimerization of enones and acrylates with alkynes. The nickel systems employed successfully catalyze the cocyclotrimerization of cyclic enones and α, β-unsaturated lactones with diynes to give the corresponding tricyclic products. ${ }^{9 a}$ M oreover, these systems catalyze linear trimerization of acrylates with alkynes to give conjugated trienes. ${ }^{9 b}$ This new triene formation reaction is highly regio- and stereoselective. Triene functionality is important in organic synthesis and in natural products. ${ }^{10}$ This catalytic reaction provides a unique method for the synthesis of trienes in which the substituents from each alkyne and al kene moiety are cis to each other. Herein, we report the results of these studies.

[^1]Table 1. Effects of Nickel Catalysts, Lewis Acids, and Solvents on the Cocyclotrimerization of 2-Cyclohexen-1-one with Octa-1,7-diyne ${ }^{\text {a }}$

entry	solvent	temp $\left({ }^{\circ} \mathrm{C}\right)$	catalyst	product 3a (yield, \%) ${ }^{\text {b }}$
1	THF	62	$\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	10
2	THF	62	$\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{ZnI}_{2}$	60
3	THF	62	$\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{ZnCl}_{2}$	32
4	THF	62	$\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{CuCl}$	24
5	THF	62	$\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Cul}$	30
6	THF	62	$\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{LiCl}$	trace
7	THF	62	$\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{MgCl}_{2}$	33
8	THF	62	$\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{BF}_{3}$	17
9	THF	62	$\mathrm{NiBr}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{ZnI}_{2}$	73
10	THF	62	$\mathrm{Nil}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{ZnI}_{2}$	80
11	toluene	62	$\mathrm{Nil}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Znl}_{2}$	17
12	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	25	$\mathrm{NiI}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{ZnI} 2$	trace
13	$\mathrm{CH}_{3} \mathrm{CN}$	80	$\mathrm{Nil}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{ZnI}_{2}$	10
14	THF	62	$\mathrm{Nil}_{2}\left(\mathrm{PPh}_{3}\right)_{2},\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{NI}$	0

${ }^{\text {a }}$ Reaction condition: 2-cycl ohexen-1-one (1.00 mmol), octa-1,7diyne (1.50 mmol), nickel catalyst (0.0500 mmol), Lewis acid $(0.0500 \mathrm{mmol}), \mathrm{Zn}(2.75 \mathrm{mmol})$, and THF $(2.00 \mathrm{~mL})$ at $62{ }^{\circ} \mathrm{C}$ for 4 h. See Experimental Section for detailed procedure. ${ }^{\mathrm{b}}$ Isolated yields.

Results and Discussion

Treatment of 2-cyclohexen-1-one (1a) in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ and Zn powder in THF with octa-1,7diyne (2) by slow addition with a syringe pump at $62{ }^{\circ} \mathrm{C}$ afforded a $[2+2+2]$ cyclotrimerization product 3a (eq 1) in 10% yield (entry 1, Table 1). Slow addition of $\mathbf{2}$ is

necessary; if $\mathbf{1 a}$ and diyne $\mathbf{2}$ were completely mixed prior to the catalytic reaction, essentially no product 3a was observed, but compound 4, a dimer of diyne 2 was isolated as the major product. Compound 3a is produced from a $[2+2+2]$ cocyclotrimerization of $\mathbf{l a}$ and $\mathbf{2}$ to give a cyclohexadiene derivative 3a', followed by dehydrogenation of $3 a^{\prime}$. In an effort to further improve the efficiency of this reaction, we found that the yield of product 3a increased on addition of a catalytic amount of Lewis acid to the above reaction. Several Lewis acids were tested, and the results are summarized in Table 1. Among these Lewis acids employed, ZnI_{2} is most effective,

[^2]Table 2. Nickel-Catalyzed Cocyclotrimerization of Cyclic Enones and Lactones with Octa-1,7-diyne and Diphenylacetylene

entry	enone $^{\text {a }}$	solvent	time (h)	temp (${ }^{\circ} \mathrm{C}$)	product (yield \%) ${ }^{\text {b }}$	
1	1b	THF	4	62		$3 b$
2	1 c	THF	4	62	Oil	3c (32)
3	1d	THF	4	62		3d (51)
4	5a	THF	4	62		$\begin{aligned} & 6(29) \\ & 7(39) \end{aligned}$
5	1a	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	20	25		13a (84)
6	1b	THF	24	60		13b (60)
7	1c	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	24	42		13c (86)
8	1d	THF	18	60		13d (20)
9	5a	THF	24	60		14a(78)
10	5b	THF	48	60		14b (28)

[^3] diphenylacetylene (2.00 mmol) or 1,7-octadiyne (1.50 mmol), $\mathrm{Nil}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(0.0500 \mathrm{mmol}), \mathrm{Znl}_{2}(0.0500 \mathrm{mmol}), \mathrm{Zn}(2.75 \mathrm{mmol})$, and solvent (4.00 or 2.00 mL). See Experimental Section for detailed procedure. ${ }^{\text {b }}$ I solated yields.
giving product 3 a in 60% yi eld using $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ as the catalyst (entry 2, Table 1). Other Lewis acids such as $\mathrm{ZnCl}_{2}, \mathrm{CuI}, \mathrm{MgCl}_{2}, \mathrm{CuCl}$, and BF_{3} also increase the yield of 3 a but are less effective than ZnI_{2}. It is noteworthy that the presence of LiCl or $(\mathrm{Bu})_{4} \mathrm{NI}$ in the reaction greatly inhibits the formation of 3 a (entry 6 and 14, Table 1).

In addition to $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2}$, and $\mathrm{Ni}-$ $\left(\mathrm{PPh}_{3}\right)_{2} 1_{2}$ are also active catalysts for the [2 $+2+2$] cyclotrimerization of 1a and 2. In fact, $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2} / \mathrm{ZnI}_{2} /$ Zn and $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{l}_{2} / \mathrm{Znl} \mathrm{I}_{2} / \mathrm{Zn}$ systems give 3 a in 73 and 80\% yields, respectively (entries 9 and 10, Table 1), higher than that from the $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2} / \mathrm{ZnI} 2 / \mathrm{Zn}$ system. The cyclotrimerization of $\mathbf{1 a}$ and $\mathbf{2}$ shows great dependence on the solvent used. Of the solvents (THF , toluene, acetonitrile, and dichloromethane) employed (entries 1113, Table 1), THF gives the highest yield of product 3a.

Other cyclic enones including 4,4-dimethyl-2-cyclo-hexen-1-one (1b), 2-cyclopenten-1-one (1c), and 2-cyclo-hepten-1-one (1d) al so successfully undergo [2 $+2+2$] cycl oaddition with $\mathbf{2}$ in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}_{2}, \mathrm{ZnI}_{2}$, and zinc powder in THF to give the corresponding products $\mathbf{3 b}-\mathbf{d}$ in $32-68 \%$ yields (eq 1). Careful examination of the crude products by ${ }^{1} \mathrm{H}$ NMR showed that cyclohexadiene derivatives $\mathbf{3} \mathbf{b}^{\prime}-\mathbf{d}^{\prime}$ were formed initially in these reactions. However, these diene products were rapidly dehydrogenated during the reaction and purification on the silica gel column. α, β-Unsaturated lactone 5a (5,6-dihydro-2H-pyran-2-one) al so undergoes [2 + $2+2$] cycloaddition smoothly with $\mathbf{2}$ under similar reaction conditions to give cyclic diene 6 and the corresponding dehydrogenated aromatic product 7 (eq 2). Unlike the

Table 3. Nickel-Catalyzed Cocyclotrimerization vs Linear Cotrimerization of Acrylates with Alkynes

entry	acrylate ${ }^{\text {a }}$	alkyne	solvent	catalyst	temp (${ }^{\circ} \mathrm{C}$)	time (h)	products (yield, \%)
1	15a	16	toluene	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	60	60	17a (82) ${ }^{\text {c }}$
2	15a	16	toluene	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	90	10	17a $(10)^{\text {b }}+19 \mathrm{a}(54)^{\text {b }}$
3	15a	16	toluene	Ni (dppe) Cl_{2}	60	24	17a (6) ${ }^{\text {b }}+19 \mathrm{a}(56)^{\text {b }}$
4	15a	16	toluene	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2}$	50	24	17a (38) ${ }^{\text {b }}+19 \mathrm{a}(59)^{\text {b }}$
5	15a	16	toluene	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}_{2}$	70	24	17a (92) ${ }^{\text {c }}$
6	15a	16	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	25	24	17a (22) ${ }^{\text {b }}$
7	15a	16	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}_{2}$	25	24	17a (13) ${ }^{\text {b }}+19 \mathrm{a}(75)^{\text {b }}$
8	15a	16	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}_{2}$	25	24	17a (3) ${ }^{\text {b }}$
9	15a	12	toluene	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	90	25	17b (30) ${ }^{\text {b }}+18 \mathrm{~b}(16)^{\text {b }}+\mathbf{1 9 b}(49)^{\text {b }}$
10	15a	12	toluene	$\mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2}$	90	25	17b (2) ${ }^{\text {b }}+18 \mathrm{~b}(6)^{\text {b }}+19 \mathrm{l}(54)^{\text {b }}$
11	15b	16	toluene	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}_{2}$	60	21	17c (88) ${ }^{\text {c }}$
12	15a	2	THF	$\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}_{2}$	62	5	21 (68) ${ }^{\text {c }}$

${ }^{\text {a }}$ Reaction conditions: acrylate (2.00 mmol), alkyne (0.720 mmol), nickel catalyst (0.0720 mmol), zinc powder (0.720 mmol), and toluene or $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$. ${ }^{\text {b }}$ Yields are measured on the basis of crude products by an ${ }^{1} \mathrm{H}$ NMR integration method using DMF as internal standard. ${ }^{\text {c I }}$ solated yields.
cyclohexadiene derivatives from cyclic enones, 6 undergoes dehydrogenation slowly and can be isolated. In all these [2 $2+2$] cycloaddition reactions, compound 4 was isolated in ca. 10\% yield from these reactions.

Acyclic enone 3-buten-2-one (8) reacts with octa-1,7diyne and different substituted hepta-1,6-diynes (9a-c) in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}_{2}, \mathrm{ZnI}_{2}$, and Zn powder to give the corresponding cocycl otrimerization-dehydrogenation products 11a-d in 68-80\% yields (eq 3). Analysis

of the crude products from these reactions by ${ }^{1} \mathrm{H}$ NMR showed the presence of initial [$2+2+2$] cycloaddition products 10a-d. These cyclohexadiene derivatives are completely dehydrogenated during silica gel column purification. Cyclic enones $\mathbf{1 a} \mathbf{- d}$ and lactone $\mathbf{5 a}$ react with hepta-1,6-diyne under similar reaction conditions to give the corresponding [2 $2+2$ 2] cycloaddition products in only 15-20\% yields. Thus, acyclic enone 8 appears to be more reactive in the [2+2+2] cycloaddition with hepta-1,6-diynes when compared to cyclic enones and lactones.

The [2 $+2+2$] cycloaddition is also successfully extended to mono alkynes. For example, the reaction of diphenylacetylene (12) with $\mathbf{1 a} \mathbf{- d}, \mathbf{5 a}$, and $\mathbf{5 b}$ in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}_{2}$ ($5 \mathrm{~mol} \%$), Znl_{2} ($5 \mathrm{~mol} \%$), and zinc powder affords the corresponding cyclohexadiene derivatives 13a-d, 14a, and 14b in good to excellent yields (Table 2 and eqs 4 and 5). Unlike previous [2 + 2

+2] cycloaddition products, 13a-d, 14a, and 14b are stable toward dehydrogenation at room temperature. In view of the fact that these cyclohexadiene products consist of enantiomers, it is interesting to see whether catalytic asymmetric [$2+2+2$] cocyclotrimerization is possible. Thus, the reaction of 1a with $\mathbf{1 2}$ was carried out in the presence of $\mathrm{Ni}(\mathrm{s}-\mathrm{Binap}) \mathrm{I}_{2}(5 \mathrm{~mol} \%), \mathrm{ZnI}_{2}$ (5 mol \%), and zinc powder in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ at $82{ }^{\circ} \mathrm{C}$ for 18 h. Product 13a was isolated in 54% yield. Unfortunately, analysis of the product by a chiral column gives an enantiomeric excess of only 5\%.

The reaction of acrylates with alkynes catalyzed by nickel complexes gives various products that depend greatly on the reaction conditions. Treatment of ethyl acrylate (15a) with 1-phenyl-1-propyne (16) in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ and Zn powder in toluene at $60^{\circ} \mathrm{C}$ afforded, instead of the [2 $+2+2]$ cyclotrimerization product, exclusively conjugated triene 17a in 82\% yield (Table 3, entry 1). Similarly, $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}_{2} / \mathrm{Zn}$ catalyzes the reaction of 15 a with 16 to give triene 17a in 92% yield and the reaction of tert-butyl acrylate (15b) with 16 affords triene $\mathbf{1 7 c}$ in 88\% yield (eq 6). Statistically, there are a vast number of possible regio- and stereoisomers for cotrimerization of an α, β-unsaturated carbonyl compound and two similar nonsymmetrical alkyne molecules to give linear trienes. The observation of only one isomer from the reaction of alkyne 16 with acrylate 15a and 15b

by using $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2} / \mathrm{Zn}$ or $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} 1_{2} / \mathrm{Zn}$ as the catalyst systems suggests that this catalytic reaction is highly stereo- and regioselective. The structures of these trienes were determined on the basis of their MS, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, NOE, and IR spectral data. The MS data of 17a displaying a molecular ion at $\mathrm{m} / \mathrm{z} 332$ and a high-resolution mass spectra showing the molecular formula as $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2}$ firmly support an adduct of two molecules of $\mathbf{1 6}$ and a molecule of 15a. The ${ }^{1}$ H NMR spectrum of $\mathbf{1 7 a}$ displays olefin proton resonances at $5.90(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz})$ for Ha , $7.90(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz})$ for Hb , and 6.39 (s) ppm for Hc. The observed coupling constant of 15 Hz between Ha and Hb unequivocally establishes the trans geometry for Ha and Hb . The relative position of methyl and phenyl groups in compound 17a is determined on the basis of its ${ }^{1} \mathrm{H}$ NMR NOE difference spectra. Irradiation of the Ha resonance at 5.90 ppm led to a 4.75% enhancement of the Me^{1} resonance at 1.68 ppm (Scheme 1). The result shows that in triene 17a the Me^{1} group is near Ha and an alkyne- $\mathbf{1 6}$ moiety is connected to the acrylate moiety through the carbon to which Me^{1} is attached. Irradiation at the resonance of the Me^{2} group produces 1.4% enhancement of the peak intensity of the two phenyl protons. This result suggests that the Me^{2} group is located between the two phenyl groups in 17a and one of the phenyl groups and Me^{2} are cis to each other. Finally irradiation of the Hb resonance at 7.90 ppm resulted in 4.75\% enhancement of the peak intensity of Hc . These NOE results are wholly in agreement with the proposed trans, cis, and cis structure shown in 17a. Further evidence for the proposed regiochemistry of 17a in which a phenyl group is attached to a terminal carbon of the triene is the absence of proton-proton coupling between Hc and Me. A clear coupling between Hc and one methyl group should be observed, if a methyl group is attached to the terminal carbon to which H c is bonded.

When the reaction of ethyl acrylate with 16 in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ and Zn powder was carried out at $90^{\circ} \mathrm{C}$ in toluene, triene 17a was obtained only in 10% yield, but the cocyclotrimerization product 19a was isolated in 54\% yield (Table 3, entry 2). Compound 19a,

Scheme 1

however, undergoes dehydrogenation readily to give the corresponding aromatic compound 20. The use of nickel complex $\mathrm{Ni}(d p p e) \mathrm{Cl}_{2}$ as catalyst at $60^{\circ} \mathrm{C}$ also produces triene 17a in 6\% yield and cocyclotrimerization product 19a in 56% yield. On the basis of the above results, it appears that high temperature and bidentate ligand favor the formation of the [$2+2+2$] cyclotrimerization product. For the formation of triene, $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}_{2}$ shows the highest selectivity among the nickel complexes used.

Similarly, diphenylacetylene (12) reacts with 15a in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2} / \mathrm{Zn}$ or $\mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2} / \mathrm{Zn}$ at 90 ${ }^{\circ} \mathrm{C}$ to afford the corresponding triene and cyclotrimerization products (Table 3, entries 9 and 10). There are two isomers of triene products 17b and 18b observed in this reaction. Presumably, triene 17b that is produced initially isomerizes to $\mathbf{1 8 b}$ at a terminal carbon-carbon double bond during the reaction. A driving force for this isomerization is likely the release of steric repulsion imparted by the cis geometry of the phenyl groups in 17b. Like 17a, triene 17b shows olefin protons at 5.66 (d, J = $15.6 \mathrm{~Hz}, \mathrm{Ha}), 8.34(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, \mathrm{Hb})$, and $6.85(\mathrm{~s}, \mathrm{Hc})$ ppm in its ${ }^{1} \mathrm{H}$ NMR spectrum. Triene 18b reveals three resonances at $5.43(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, \mathrm{Hb}), 7.62(\mathrm{~d}, \mathrm{~J}=15$ Hz, Ha), and 6.48 (s, Hc) ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum. The regiochemistry of $\mathrm{Ha}, \mathrm{Hb}, \mathrm{Hc}$, and phenyl groups of 17b and 18b is assigned on the basis of ${ }^{1} \mathrm{H}$ NMR NOE difference spectra (Scheme 1). Finally, the structure of 17b was confirmed unambiguously by single-crystal X-ray diffraction analysis (Figure 1). The structures of cyclohexadiene derivatives 19a and 19b were also confirmed by spectroscopic methods.

The reaction of ethyl acrylate(15a) with octa-1,7-diyne in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}_{2}, \mathrm{Znl}_{2}$, and zinc powder in THF also gives triene derivative $\mathbf{2 1}$ in 68% yield (Table 3, entry 12). The structure of $\mathbf{2 1}$ is determined on the basis of its spectral data and NOE difference spectra. Terminal alkynes 1-pentyne (22a) and 1-hexyne (22b) react with 15a in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ and Zn powder in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ to give a mixture of compounds. The major products in these reactions aretrienes 23a in 62% yield and 23b in 71% yield, respectively (eq 7). These products were characterized on the basis of ${ }^{1} \mathrm{H}$ NMR, IR, and GC-MS data. The yields of 23a and 23b were measured by an ${ }^{1} \mathrm{H}$ NMR integration method using an internal standard.

Figure 1. Crystal structure of 17b.

On the basis of the established chemistry of nickel complexes, and the structures of linear cotrimerization and cyclotrimerization products, the mechanism shown in Scheme 2 is proposed to account for the present nickelcatalyzed cocyclotrimerization and linear cotrimerization of an alkene and two alkynes. Reduction of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{X}_{2}$ to a $\mathrm{Ni}(0)$ species initiates the catalytic reaction. Coordination of two molecules of nonsymmetrical alkynes to the nickel center followed by oxidative cyclometalation produces nickelacyclopentadiene intermediate 24. ${ }^{11,12}$ Coordination of an enone or acrylate molecule and insertion of this molecule into a $\mathrm{Ni}(\mathrm{II})$-carbon bond gives nickelacycloheptadiene intermediate 25. Reductive elimination of $\mathbf{2 5}$ gives a cocyclotrimerization product and regenerates the nickel(0) catalyst. Alternatively, intermediate 25 may undergo β-hydride elimination to give nickel hydride species $\mathbf{2 6}$ followed by reductive elimination of $\mathbf{2 6}$ to yield a linear triene product and regenerate the nickel catalyst. In view of the high regioselectivity of linear cotrimerization and cyclotrimerization products, preferential formation of the nickelacyclopentadiene intermediate 24 with the $R^{1}-R^{2}-R^{1}-R^{2}$ sequence (see Scheme 2) is necessary. The unique stereoselectivity of triene products with each pair of the substituents from the same alkyne cis to each other is attributed to the formation of five-membered ring nickel intermediate $\mathbf{2 4}$ during the catalytic reaction. The observed exclusive E-selectivity of the acrylate moiety in the linear cotrimerization products indicates that β-hydride elimination of $\mathbf{2 5}$ occurs solely at the hydrogen H^{1} cis to the ester group (see Scheme 3). This may be explained on the basis

[^4]Scheme 2. Mechanism for Cyclotrimerization and Linear Cotrimerization

Scheme 3. Proposed Pathway for β-Hydride Elimination of $\mathbf{2 5}$

of the requirement that the β-hydrogen for elimination should be syn to the metal center and al so the steric effect imparted by the ester group of the acrylate moiety. Elimination of the β-hydrogen H^{1} cis to the ester group is expected to proceed via intermediate I in which the ester group points out of the nickelacycloheptadienering. On the other hand, elimination of the β-hydrogen H^{2} trans to the ester group proceeds via intermediate II in which the ester group points toward the ring. Due to the repulsion between the ester group and the ring, II is expected to be much higher in energy than I. Consequently, the major pathway for β-hydride elimination of 25 is that via I and the resulting triene product is trans in the acrylate moiety.

An alternative mechanism for the formation of cocyclotrimerization and linear cotrimerization products is coordination of an alkyne and an α, β-unsaturated carbonyl compound to the nickel metal center to produce the five-membered nickelacyclopentene ${ }^{13}$ intermediate 24' followed by insertion of another alkyne into the nickel carbon bond to which R^{1} is attached in $\mathbf{2 4}$ to yield seven-

24'
membered ring intermediate 25. This intermediate then undergoes the same reactions shown in Scheme 2 to give cocyclotrimerization and cotrimerization products. The mechanism cannot be totally ruled out, but it is less likely particularly for the [$2+2+2$] cycloaddition of a diyne and an alkene. In this [2 + 2 + 2] cycloaddition, dimerization of the diyne is a competition reaction. The formation of dimer can only be explained on the basis of a nikelacyclopentadiene intermediate.

The fact that the yield of cocycl otrimerization product increases in the presence of Lewis acid suggests a Lewisassisted insertion of an enone into a carbon-carbon bond of nickelacyclopentadiene intermediate 24. This observation is similar to that by Ikeda and co-workers. ${ }^{8}$ They have shown that cocyclotrimerization is greatly enhanced in the presence of Lewis acid such as $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$ and ZnCl_{2}.

Conclusion

We have demonstrated that nidkel systems $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{X}_{2} /$ $\mathrm{ZnI}_{2} / \mathrm{Zn}$ effectively catalyze cocycl otrimerization of internal and terminal alkynes and diynes with α, β-unsaturated cyclic and acyclic enones and α, β-unsaturated lactones. This catalytic reaction provides an efficient method for the construction of tricyclic and bicydic compounds. Previous $\mathrm{Ni}(\mathrm{acac})_{2} / \mathrm{PPh}_{3} / \mathrm{Al}(\mathrm{Me})_{3}$ and $\mathrm{NiCl}_{2} /$ $\mathrm{ZnCl}_{2} / \mathrm{Zn}$ systems reported by Ikeda et al. were used mainly in the synthesis of bicyclic compounds using α, β unsaturated cyclic and acyclic enones as the alkene substrates. Only one example of a tricyclic compound was demonstrated by using the $\mathrm{NiCl}_{2} / \mathrm{ZnCl}_{2} / \mathrm{Zn}$ system. The $[2+2+2]$ cocyclotrimerization of α, β-unsaturated lactones and acrylates with alkynes or diynes is not reported. In addition to [2+2+2] cocyclotrimerization, the present $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{X}_{2} / \mathrm{Zn}$ and $\mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2} / \mathrm{Zn}$ systems also catalyze unprecedented linear cotrimerization of an acrylate with two alkynes to afford highly regio- and stereoselective trienes. Application of these nickelcatalyzed reactions in the synthesis of natural products is in progress.

Experimental Section

All reactions were conducted under a nitrogen atmosphere on a dual-manifold Schlencline by using purified deoxygenated sol vents and standard inert atmosphere techniques, unless otherwise stated. Reagents and chemicals were used as purchased without further purification. Hepta-1,6-diynes $9 \mathbf{c}$-d were prepared by following literature procedures. ${ }^{14}$ The catalysts $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{X}_{2}{ }^{15 \mathrm{a}}$ and Ni (dppe) $\mathrm{Cl}_{2}{ }^{15 \mathrm{~b}}$ were synthesized according to reported procedures.

General Procedure for the Cocyclotrimerization of $\alpha_{p} \beta$-Unsaturated Cyclic Enones, Lactones, and 3-Buten-2-one with Diynes. A round-bottom sidearm flask (50 mL) containing $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{X}_{2}(0.0500 \mathrm{mmol})$, Lewis acid (0.0500 mmol), and zinc powder ($0.180 \mathrm{~g}, 2.75 \mathrm{mmol}$) was evacuated

[^5]and purged with nitrogen gas five times. Freshly distilled dry THF (1.0 mL) and an α, β-unsaturated cyclic enone or Iactone (1.00 mmol) were added. To the system heated at $60-2{ }^{\circ} \mathrm{C}$ with stirring was injected via a syringe pump a solution consisting of diyne (1.5 mmol) and dry THF (2.00 mL) with an injection rate $1.0 \mathrm{~mL} / \mathrm{h}$. After addition, the system was further heated at $60-2{ }^{\circ} \mathrm{C}$ for 2 h . The solution was stirred in the air for 15 min, filtered through Celite and silica gel, and eluted with dichloromethane. The filtrate was concentrated, and the residue was purified on silica gel column using hexanes-ethyl acetate as eluent to afford the desired products.

A similar procedure was also employed for the reaction of 3-buten-2-one (2.000 mmol) and appropriate diynes (1.000 mmol) to afford 11a-c.

Compounds 11a-c were characterized by comparing their spectral data with those reported earlier. ${ }^{8 b, 16}$ I mportant spectral data for new compounds 3a-d, 5, 6, and 11d follow.

1,2,3,4,5,6,7,8-Octahydro-1-anthracenone (3a). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73$ (s, 1 H , aromatic), $6.92(\mathrm{~s}, 1 \mathrm{H}$, aromatic), $2.85(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}$ $=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{tt}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{br}$ $\mathrm{s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 198.25(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, 143.48 (s), 141.22 (s), 135.50 (s), 130.03 (s), 128.88 (d), 127.34 (d), 39.01 (t$), 29.52(\mathrm{t}), 29.10(\mathrm{t}), 28.74(\mathrm{t}), 23.32(\mathrm{t}), 22.87(\mathrm{t})$, 22.69 (t). IR (neat): $1680.10 \mathrm{~cm}^{-1}$. HRMS: cal cd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$ 200.1202, found 200.1299.

4,4-Dimethyl-1,2,3,4,5,6,7,8-octahydro-1-anthracenone (3b). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72$ (s, 1 H , aromatic), 7.07 ($\mathrm{s}, 1 \mathrm{H}$, aromatic), 2.78 (t, J $=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.75(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.67\left(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CO}\right)$, $1.96(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.45$ (s, C=O), 149.25 (s), 143.96 (s), 135.37 (s), 128.85 (s), 127.74 (d), 126.15 (d), 37.28 (t), 35.11 (t), 33.45 (s), 29.96 (t), 29.72 (q), 28.77 (q), 22.99 (t), 22.87 (t). IR (neat): $1682.16 \mathrm{~cm}^{-1}$. HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}$ 228.1515, found 228.1507.

2,3,5,6,7,8-Hexahydro-1H-cyclopenta[b]naphthalen-1one (3c). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39$ ($\mathrm{s}, 1 \mathrm{H}$, aromatic), $7.09(\mathrm{~s}, 1 \mathrm{H}$, aromatic), $2.97(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{brt}$, J $=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.57(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{q}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 MHz, CDCl 3): $\delta 194.46$ (s, $\mathrm{C}=0$), 152.21 (s), 145.29 (s), 136.74 (s), 126.74 (d), 123.68 (d), 36.46 (t), 30.31 (t), 29.32 (t), 25.24 (t), 22.92 (t$), 22.77$ (t). IR (neat): $1708.7 \mathrm{~cm}^{-1}$. HRMS: cal cd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}$ 186.1044, found 186.1056.

2,3,4,6,7,8,9,10-Octahydro-1H-cyclohepta[b]naphthalen-6-one (3d). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45(\mathrm{~s}, 1 \mathrm{H}$, aromatic), 6.87 (s, 1 H , aromatic), $2.84(\mathrm{t}$, J $=6.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CO}-\mathrm{CH}_{2}-$), $2.74(\mathrm{~s}, 4 \mathrm{H}), 2.68(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.75$ ($\mathrm{m}, 8 \mathrm{H}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 187.01(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, 142.01 (s), 138.45 (s), 136.12 (s), 135.51 (s), 130.29 (d), 129.35 (d), 40.87 (d), 32.13 (q), 29.39 (q), 28.79 (q), 25.34 (q), 23.08 (q), 22.93 (q), 20.94 (q). IR (neat): $1672.72 \mathrm{~cm}^{-1}$. HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}$ 214.1358, found 214.1351.

3,4,4a,6,7,8,9,10a-Octahydro-1H-benzo[g]isochromen-1-one (6). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.45$ (dd, J $=2.3$ $\mathrm{Hz}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{dd}, \mathrm{J}=1.9 \mathrm{~Hz}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~m}, 1 \mathrm{H}), 2.28$ (br s, 4 H), $1.89(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{q}, \mathrm{J}=2.5 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.03$ (s, $\mathrm{C}=0$), 136.28 (s), 136.20 (s), 121.57 (d), 116.56 (d), 67.96 (t), 40.21 (d), 31.09 (d), 30.57 (t$), 30.54$ (t), 25.66 (t$), 24.07$ (t$), 23.94$ (t$).$ IR (neat): 1727.99 cm^{-1}. HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ 204.1151, found 204.1137.
3,4,6,7,8,9-Hexahydro-1H-benzo[g]isochromen-1-one (7). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78$ ($\mathrm{s}, 1 \mathrm{H}$, aromatic), 6.92 (s, 1 H , aromatic), $4.47\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CO}\right), 2.94(\mathrm{t}$, $\mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 4 \mathrm{H}), 1.79(\mathrm{br} \mathrm{s}, \mathrm{J}=3.6 \mathrm{~Hz}, 4 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.56$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 143.99 (s$)$

[^6]136.94 (s), 136.31 (s), 130.95 (s), 127.61 (d), 122.47 (s), 67.44 (t), 29.70 (t), 28.91 (t), 27.47 (t), 22.83 (t), 22.70 (t). IR (neat): $1719.55 \mathrm{~cm}^{-1}$. HRMS: cal cd $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$ 202.0990, found 202.0990.

The ${ }^{1} \mathrm{H}$ NMR data of the intermediate dienes $\mathbf{1 0 a}$ - \mathbf{d} were also obtained and are listed bellow.

1-(2,3,5,6,7,8-H exahydro-2-naphthalenyl)-1-ethanone (10a). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.46$ (br d, J $=3.5 \mathrm{~Hz}, 1$ $\mathrm{H}), 4.23(\mathrm{dd}, \mathrm{J}=3.2 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 2.17$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $2.10(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.60(\mathrm{~m}, 4 \mathrm{H})$.

1-(2,3,5,6-Tetrahydro-1H-5-indenyl)-1-ethanone (10b). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.54(\mathrm{br} \mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.27 (dd, J $=3.2 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}$, $2 \mathrm{H}), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.03-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H})$.

Diethyl 5-Acetyl-2,3,5,6-tetrahydro-1H-2,2-indenedicarboxylate (10c). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.54$ (br d, $\mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, \mathrm{J}=2.8 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ $\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.99(\mathrm{~s}, 4 \mathrm{H}), 2.88(\mathrm{~m}, 1 \mathrm{H}), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.04(\mathrm{~m}, 2 \mathrm{H}), 1.26\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

5,5-Dimethyl-4'-acetylspiro[hexane-1,3-dione-2,1'-4',5' dihydroindane] (10d). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.53$ (br d, J $=3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.27 (dd, J $=3.1 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.39(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 2.68(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.95(\mathrm{~m}, 2 \mathrm{H}), 1.06\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

5,5-Dimethyl-4'-acetylspiro[hexane-1,3-dione-2,1'-indane] (11d). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.97$ (d, J $=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 4 \mathrm{H})$, $3.10(\mathrm{~s}, 2 \mathrm{H}) 2.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.89(\mathrm{~s}, 2 \mathrm{H}), 0.99(\mathrm{~s}, 6 \mathrm{H}$, CH_{3}). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 195.12(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, 189.66 (s, C=O), 139.78 (s), 138.28 (s), 137.87 (s), 129.68 (d), 126.49 (d), 123.99 (d), 71.41 (s), 54.54 (t), 51.43 (t), 44.57 (t), 38.42 (t), 30.55 (s), 28.68 (q), 28.39 (q), 28.33 (q). IR (neat): 1725, $1699.1 \mathrm{~cm}^{-1}$. HRMS: calcd $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$ 284.1441, found 284.1456.

General Procedure for the Cocyclotrimerization of Cyclic Enones and Lactones with Diphenylacetylene. To a round-bottom sidearm flask (50 mL) were added diphenylacetylene $(0.356 \mathrm{~g}, 2.00 \mathrm{mmol}), \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{l}_{2}(0.042 \mathrm{~g}, 0.0500$ $\mathrm{mmol}), \mathrm{Znl}_{2}(0.0140 \mathrm{~g}, 0.0500 \mathrm{mmol})$, and zinc powder (0.180 $\mathrm{g}, 2.75 \mathrm{mmol})$. The system was evacuated and then purged with nitrogen gas five times. To this system were added a freshly distilled appropriate solvent (4.0 mL) and an α, β unsaturated cyclic enone or lactone (1.00 mmol). The reaction was carried out at a specified temperature and time as shown in Table 2. The reaction mixture was stirred in the air for 15 min at ambient temperature, filtered through Celite and silica gel, and eluted with dichloromethane. The filtrate was concentrated, and the residue was purified on a silica gel column using hexanes-ethyl acetate as el uent to afford the [2+2+ 2] products.

Compounds $\mathbf{1 3} \mathbf{a}-\mathbf{d}$ and $\mathbf{1 4 a}-\mathbf{b}$ were prepared by following this procedure. Important spectral data of these compounds follow.

5,6,7,8-Tetraphenyl-1,2,3,4,4a,8a-hexahydro-1-naphthalenone (13a). ${ }^{1} \mathrm{H} N \mathrm{NR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.08(\mathrm{~m}, 10$ H , phenyl), $6.80(\mathrm{~m}, 10 \mathrm{H}$, phenyl), $4.04(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CO}-\mathrm{CH}$), 3.28 ($\mathrm{d} \mathrm{d} \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{~J}=3.3 \mathrm{~Hz}, \mathrm{~J}=3.3 \mathrm{~Hz}, 1$ $\mathrm{H}), 2.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.16\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}\right), 1.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 212.39$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 140.63 (s), 140.15 (s), 139.31 (s), 139.27 (s), 138.27 (s), 137.95 (s), 131.47 (s), 130.99 (d), 130.94 (d), 129.43 (d), 129.13 (d), 127.57 (d), 127.51 (d), 126.94 (d), 126.80 (d), 126.25 (d), 126.24 (d), 125.64 (d), 125.47 (d), 57.88 (d), 45.02 (d), 41.10 (t), 25.51 (t), 25.38 (t). IR (neat): $1706 \mathrm{~cm}^{-1}$. El-MS m/z (rel intensity): $452\left(\mathrm{M}^{+}, 42.7\right), 424$ (23.1), 395 (21.3), 317 (16.0). HRMS: calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O} 452.21141$, found 452.2137 .

4,4-Dimethyl-5,6,7,8-tetraphenyl-1,2,3,4,4a,8a-hexahy-dro-1-naphthalenone (13b). ${ }^{1} \mathrm{H} N \mathrm{NR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.48-6.75 (m, 20 H , phenyl), 4.37 (d, J $=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 $(d, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.68-1.55(\mathrm{~m}, 2 \mathrm{H}), 0.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.65(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 142.66$ (s), 140.20 (s), 139.08 (s), 138.90 (s), 131.11 (d), 130.47 (s), 130.36 (d), 129.96 (d), 129.46 (d), 127.36 (d), 126.99 (d), 126.68 (d), 126.38 (d), 126.11 (d), 125.88 (d), 125.51 (d), 57.77 (d), 52.02 (d), 41.98
(t), 37.98 (d), 35.21 (s), 31.38 (q), 22.81 (q). IR (neat): 1709.26 cm^{-1}. HRMS: calcd for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{O} 480.2445$, found 480.2473.

4,5,6,7-Tetraphenyl-2,3,3a,7a-tetrahydro-1H-1-indenone (13c). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{~Hz}, \mathrm{CDCl}_{3}$): $\delta 7.15-6.97$ (m, 10 H , phenyl), 6.96-6.74 (m, 10 H , phenyl), 3.94 (d d, J $=6.4 \mathrm{~Hz}$, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d} \mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}$, $\mathrm{J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 Hz, CDCl_{3}): $\delta 181.49(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 141.73$ (s), 140.17 (s), 140.13 (s), 139.63 (s), 139.59 (s), 132.14 (d), 131.26 (d), 130.85 (d), 129.46 (d), 128.73 (d), 127.77 (d), 127.56 (d), 126.95 (d), 126.72 (d), 126.17 (d), 126.11 (d), 125.59 (d), 125.37 (d), 57.07 (d), 41.93 (d), 35.99 (t), 26.50 (t). IR (KBr): $1735.68 \mathrm{~cm}^{-1}$. HRMS: calcd for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{O} 438.1983$, found 438.1958 .

1,2,3,4-Tetraphenyl-5,6,7,8,9,9a-hexahydro-4aH-benzo-[a]cyclohepten-5-one (13d). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{~Hz}, \mathrm{CDCl}_{3}$): δ 7.19-6.68 (m, 20 H , phenyl), $4.47(\mathrm{~d}, \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CO}-$ $\mathrm{CH}), 2.85(\mathrm{dt}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.75(\mathrm{~m}, 3 \mathrm{H}), 1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.23(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (75 Hz, CDCl 3): $\delta 187.23(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 141.57(\mathrm{~s}), 140.79$ (s), 139.92 (s), 139.24 (s), 138.98 (s), 137.93 (s), 136.74 (s), 131.53 (s), 131.00 (d), 130.90 (d), 129.15 (d), 129.03 (d), 127.68 (d), 127.55 (d), 126.95 (d), 126.83 (d), 126.53 (d), 126.28 (d), 125.6 (d), 125.48 (d), 61.90 (d), 43.41 (t), 42.67 (d), 30.68 (t), 26.54 (t), 22.29 (t). IR (neat): $1689.67 \mathrm{~cm}^{-1}$. HRMS: cal cd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O} 466.2289$, found 466.2286.

5,6,7,8-Tetraphenyl-3,4,4a,8a-tetrahydro-1H-1-isochromenone (14a). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.21-6.64$ (m, 20 H , phenyl), $4.22(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~d}, \mathrm{~J}=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.19-2.01(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 173.03(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 140.96(\mathrm{~s}), 139.66(\mathrm{~s}), 139.20(\mathrm{~s}), 139.09(\mathrm{~s})$, 138.93 (s), 138.43 (s), 136.74 (s), 132.05 (s), 131.07 (d), 130.81 (d), 129.37 (d), 129.31 (d), 127.68 (d), 127.65 (d), 126.99 (d), 126.83 (d), 126.50 (d), 126.44 (d), 125.81 (d), 126.59 (d), 67.18 (t), 48.14 (d), 35.87 (d), 25.60 (t). IR (neat): $1736.95 \mathrm{~cm}^{-1}$. HRMS: cal cd for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{O}_{2} 454.1926$, found 454.1926.

4,5,6,7-Tetraphenyl-1,3,3a,7a-tetrahydro-1-isobenzofuranone (14b). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.27(\mathrm{~m}, 3 \mathrm{H}$, phenyl), 7.13 (m, 6 H , phenyl), 6.93-6.81 (m, 9 H , phenyl), $6.65(\mathrm{~m}, 2 \mathrm{H}$, phenyl), $4.40(\mathrm{~d} \mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.23 (d d, J $=1.2 \mathrm{~Hz}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~d}$, $\mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 177.67(\mathrm{~s}$, $\mathrm{C}=\mathrm{O}$), 140.61 (s), 140.29 (s), 139.33 (s), 139.04 (s), 131.41 (d), 131.09 (d), 130.71 (d), 129.43 (d), 128.79 (d), 128.73 (d), 128.25 (d), 127.72 (d), 127.05 (d), 126.89 (d), 126.75 (d), 126.61 (d), 126.54 (d), 125.91 (d), 125.70 (d), 125.15 (d), 71.37 (t), 47.03 (d), 42.69 (d). IR (KBr) $1767.86\left(\mathrm{C}=0\right.$), $1597.85 \mathrm{~cm}^{-1}$. HRMS: calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{2} 440.1776$, found 440.1763 .

General Procedure for the Reaction of Acrylates with 1-Phenyl-1-propyne. A round-bottom sidearm flask (50 mL) was charged with $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{X}_{2}$ or $\mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2}(0.0720 \mathrm{mmol})$ and zinc powder ($0.0475 \mathrm{~g}, 0.720 \mathrm{mmol}$). The system was evacuated and purged with nitrogen gas five times. Freshly distilled toluene or $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$, acrylates (2.00 mmol) were added, and the solution was stirred at ambient temperature for 10 min to dissolve the catalyst completely. To this system was added 1-phenyl-1-propyne ($0.090 \mathrm{~mL}, 0.720 \mathrm{mmol}$), and the reaction was carried out at a specified temperature and time as shown in Table 3. The reaction mixture was stirred in the air for 15 min at ambient temperature, filtered through Celite and silica gel, and eluted with dichloromethane. The filtrate was concentrated, and the residue was separated on a silica gel column using hexane-dichloromethane (2:1) as eluent to afford the desired products. Spectral data for compounds 17a and 17c are listed bel ow, while the yields of these products are shown in Table 3.

Compounds 17b, 18b, and 19b were also prepared from the reaction of ethyl acrylate ($0.20 \mathrm{~mL}, 2.00 \mathrm{mmol}$) and diphenylacetylene ($0.0891 \mathrm{~g}, 0.5000 \mathrm{mmol}$) in the presence of Ni $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ (or $\left.\mathrm{Ni}(\mathrm{dppe}) \mathrm{Cl}_{2}\right)(0.0500 \mathrm{mmol}), \mathrm{Zn}(0.1800 \mathrm{~g}, 2.750$ $\mathrm{mmol})$, and $\mathrm{PPh}_{3}(0.1574 \mathrm{~g}, 0.6000 \mathrm{mmol})$ in toluene $(2.0 \mathrm{~mL})$ at $90{ }^{\circ} \mathrm{C}$ for 25 h by following a procedure similar to that described above. Important spectral data of these products follow.

Ethyl (2E ,4Z,6E)-4,6-Dimethyl-5,7-diphenyl-2,4,6-heptatrienoate (17a). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.90$ (d, J
$=15 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.12-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.39$ $(\mathrm{s}, 1 \mathrm{H}), 5.90(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.68(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.53,153.60,145.66,145.66$, 139.54, 137.64, 137.24, 132.56, 129.23, 128.98, 128.74, 128.07, 128.03, 127.54, 126.70, 117.61, 59.99, 16.18, 14.17; IR (neat): $1712 \mathrm{~cm}^{-1}$. EI-MS m/z (rel intensity): 332 (M+, 86.7), 259 (M - COOEt ${ }^{+}, 100$). HRMS: calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2}$ 332.1777, found 332.1782.

Ethyl (2E ,4E ,6E)-4,5,6,7-Tetraphenyl-2,4,6-heptatrienoate (17b). $\mathrm{Mp}: 150-152^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.34(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.02-7.12(\mathrm{~m}$, $3 \mathrm{H}), 6.92-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ $\left\{^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 167.46, 146.20, 136.56, 134.52, $131.11,130.49,129.69,129.59,128.22,128.08,128.04,127.35$, 127.05, 127.00, 121.80, $60.12,14.14$. IR (neat): $1708 \mathrm{~cm}^{-1}$. EIMS m/z (rel intensity): 278 ($\mathrm{M}^{+}, 42.7$), 205 ($\mathrm{M}-$ COOEt $^{+}, 100$). HRMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$ 278.1307, found 278.1294.
tert-Butyl (2E,4Z,6E)-4,6-Dimethyl-5,7-diphenyl-2,4,6heptatrienoate (17c). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94$ (d, J $=16 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.37(\mathrm{~m}, 10 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~d}$, $\mathrm{J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 166.98,153.08,144.74$, 139.81, 137.84, 137.43, 132.38, 129.36, 129.10, 128.94, 128.10, $127.53,126.73,119.73,79.92,28.20,18.15,16.32$. IR (neat): $1704 \mathrm{~cm}^{-1}$. EI-MS m/z (rel intensity): 360 (M+, 0.3), 303 (M $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}{ }^{+}, 24\right), 259$ (44). HRMS: calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{2} 360.2090$, found 360.2086 .

Ethyl 3,4,5,6-Tetraphenyl-2,4-cyclohexadiene-1-carboxylate (19b). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} \mathrm{CDCl}_{3}$): $\delta 6.97-7.07$ (m , 5 H), 6.91-6.94 (m, 3 H), 6.77-6.78 (m, 6 H), 6.69-6.71 (m, 3 H), 6.62-6.65 (m, 3H), $4.10(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, \mathrm{J}=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.00,142.22,141.55$, $139.39,139.26,137.22,134.10,132.99,131.05,130.94,130.00$, $129.15,128.47,127.62,127.53,126.96,126.93,126.12,126.09$, 125.56, 125.57, 60.90, 46.78, 34.30, 14.23. IR (neat): $1721 \mathrm{~cm}^{-1}$. EI-MS m/z (rel intensity): 456 (M+, 76), 383 (M - COOEt ${ }^{+}$, 100). HRMS: calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{O}_{2} 456.2090$, found 456.2075 .

Ethyl 2,4-Diphenyl-3,5-dimethylbenzoate (20). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59$ ($\mathrm{s}, 1 \mathrm{H}$, aromatic), $7.33-7.24$ (m , 10 H , phenyl), $3.99\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.75(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right), 0.92\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) . \mathrm{GCMS}: 330\left(\mathrm{M}^{+}\right)$.

Compound 21 was prepared from the reaction of ethyl acrylate ($0.20 \mathrm{~mL}, 2.00 \mathrm{mmol}$) and 1,7-octadiyne $(0.130 \mathrm{~mL}$, $1.00 \mathrm{mmol})$ in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{I}_{2}(0.0500 \mathrm{mmol})$, Zn $(0.180 \mathrm{~g}, 2.75 \mathrm{mmol})$, and $\mathrm{ZnI}_{2}(0.0140 \mathrm{~g}, 0.0500 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ for 5 h by following a procedure similar to that described above. Important spectral data of this product follow.

Ethyl (2E,4Z)-4-(2-Methylenecyclohexylidene)-2-butenoate (21). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66$ (d d, J = $11.3 \mathrm{~Hz}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, \mathrm{~J}=11.37 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ $(\mathrm{d}, \mathrm{J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, \mathrm{~J}=$ $1.05 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.26(\mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, 3$ $\mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 167.63,153.23$,
146.04,142.06, 121.82, 119.52, 113.49, 60.05, 37.98, 36.55, 27.61, 27.51, 14.31. IR (neat): 1713, $1625 \mathrm{~cm}^{-1}$. HRMS (FAB, $\mathrm{M}+1$): calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2}$ 207.1385, found 207.1392.

Synthesis of Ethyl (2E,4Z)-4,6-Dipropyl-2,4,6-heptatrienoate (23a) from Ethyl Acrylate and 1-Pentyne. A 50 mL round-bottom sidearm flask was charged with Ni $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.0653 \mathrm{~g}, 0.1000 \mathrm{mmol})$ and zinc powder (0.0983 $\mathrm{g}, 1.500 \mathrm{mmol})$. The system was evacuated and purged with nitrogen gas five times. Freshly distilled $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and 1-pentyne ($0.30 \mathrm{~mL}, 3.00 \mathrm{mmol}$) were added, and the solution was stirred at ambient temperature for 10 min to dissolve the catalyst completely. To this reaction mixture was added ethyl acrylate ($0.20 \mathrm{~mL}, 2.00 \mathrm{mmol}$), and the mixture was stirred at room temperature for 12 h . The reaction mixture was stirred in the air for 15 min at ambient temperature, filtered through Celite and silica gel, and eluted with dichloromethane. The filtrate was concentrated, and the resultant residue was purified on a silica gel column using hexane-dichloromethane (2:1) as eluent. A mixture of isomers was obtained in 76% yield $(0.2693 \mathrm{~g})$. The yield of desired product 23a was measured as 62% by an ${ }^{1} \mathrm{H}$ NMR integration method using DMF as the internal standard. Spectral data for 23a follow. ${ }^{1}$ H NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.88$ $(\mathrm{d}, \mathrm{J}=16 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{q}, \mathrm{J}=4.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.01-2.18(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=$ $5.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.83-0.85(\mathrm{~m}, 6 \mathrm{H})$. IR (neat): $1718,1623 \mathrm{~cm}^{-1}$. EI-MS m/z (rel intensity): 236 (M+, 15), 207 (M - Et ${ }^{+}, 12$). HRMS: cal cd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2} 236.1777$, found 236.1771.

By following a procedure similar to that described above, 23b was obtained from the reaction of 1-hexyne $(0.35 \mathrm{~mL}, 3.00$ mmol) and ethyl acrylate ($0.20 \mathrm{~mL}, 2.00 \mathrm{mmol}$) in the presence of $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.0653 \mathrm{~g}, 0.1000 \mathrm{mmol})$ and $\mathrm{Zn}(0.0987 \mathrm{~g}, 1.500$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.00 \mathrm{~mL})$ at room temperature for 12 h . A product mixture was obtained from the reaction which we were unable to separate. The yield of 23b (71\%) was measured by an ${ }^{1} \mathrm{H}$ NMR integration method with DMF as the internal standard. Important spectral data of 23b follow.
Ethyl (2E,4Z)-4,6-Dibutyl-2,4,6-heptatrienoate (23b). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.12$ ($\mathrm{s}, 1 \mathrm{H}$), $5.96(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H})$, $4.21(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-2.28(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.38(\mathrm{~m}, 8$ H), 0.87-0.94 (m, 5 H). IR (neat): 1715, $1623 \mathrm{~cm}^{-1}$. EI-MS m / z (rel intensity): $264\left(\mathrm{M}^{+}, 23\right)$. HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{2}$ 264.2090, found 264.2086.

Acknowledgment. We thank the National Science Council of the Republic of China (NSC 88-2113-M-007030) for support of this research and T.S. thanks NSC for postdoctoral fellowship.

Supporting Information Available: ${ }^{1} \mathrm{H}$ NMR, NOE, and ${ }^{13} \mathrm{C}$ NMR spectra of 3a-d, 5, 6, 10d, 13a-d, 14a, b, 17a-c, 19b, and 21, tables of crystal data and thermal parameters, and ORTEP drawing of compound 17b. This material is available free of charge via the Internet at http://pubs.acs.org.

J 09900580

[^0]: (1) (a) Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1984, 23, 539. (b) Negishi, E.; Cederbaum, F. E.; Takahashi, T. Tetrahedron Lett. 1986, 27, 2829. (c) Nugent, W. A.; Thorn, D. L.; Harlow, R. L. J . Am. Chem. Soc. 1987, 109, 2788.
 (2) (a) Chalk, A. J. J. Am. Chem. Soc. 1972, 94, 5928. (b) Suzuki, H.; Itoh, K.; Ishii, Y.; Simon, k.; Ibers, J. A. J . Am. Chem. Soc. 1976, 98, 8494. (c) Balaich, G. J.; RothwelI, I. P. J. Am. Chem. Soc. 1993, 115, 1581.
 (3) (a) Zhou, Z.; Battaglia, L. P.; Chiusoli, G. P.; Costa, M.; Nardelli, M.; Pelizzi, C.; Predieri, G. J . Chem. Soc., Chem. Commun. 1990, 1632. (b) Zhou, Z.; Costa, M.; Chiusoli, G. P. J . Chem. Soc., Perkin Trans. 1 1992, 1399. (c) Grigg, R.; Scott, R.; Stevenson, P.J. Chem. Soc., Perkin Trans. 1 1988, 1365.
 (4) (a) Tsuda, T.; Kumisada, K.; Nagakama, M.; Morihara, S.; Saegusa, T. Synth. Commun. 1989, 19, 1575. (b) Tsuda, T.; Kiyoi, T.; Miyane, T.; Saegusa, T. J. Am. Chem. Soc. 1988, 110, 8570.
 (5) (a) Tsuda, T.; Sumiya, R.; Saegusa, T. Synth. Commun. 1987, 17, 147. (b) Tsuda, T.; M orihara, S.; Sumiya, R.; Saegusa, T. J. Org. Chem. 1988, 53, 3140. (c) Tsuda, T.; M orihara, S.; Saegusa, T. J. Chem Soc., Chem. Commun. 1989, 9.
 (6) Tamao, K.; K obayashi, K.; Ito, Y. J . Org. Chem. 1989, 54, 3517.

[^1]: (7) (a) Huang, D.-J .; Sambaiah, T.; Cheng, C.-H. New J . Chem. 1998, 22, 1147. (b) H siao, T.-Y.; Santhosh, K. C.; Liou, K.-F.; Cheng, C.-H. J. Am. Chem. Soc. 1998, 120, 12232.
 (8) (a) I keda, S.; Mori, N.; Sato, Y. J. Am. Chem. Soc. 1997, 119, 4779. (b) Appeared during our manuscript preparation: Ikeda, S.; Watanabe, H.; Sato, Y. J . Org. Chem. 1998, 63, 7026.
 (9) Part of the material of (a) cocyclotrimerization was extracted from the Ph.D. Thesis of D.-J. Huang, submitted to National Tsing Hua University, Hsinchu, Taiwan, ROC, 1994. (b) Linear cotrimerization in this paper was from the Ph.D. Thesis of Lih-Ping Li, 1998.

[^2]: (10) (a) SRS-A and Leukootrienes; Piper, P. J ., Ed.; Research Studies Press: London, 1981; p 279. (b) Advances in Prostaglandin, Thromboxane, and Leukotriene Research, Vol. 9; Samuelsson, B., Paoletti, R., Eds.; Raven Press: New York, 1982; p 341. (c) Clark, D. A.; Marfat, A, Ann. Rep. Med. Chem. 1982, 17, 291. (d) Borgeat, P.; Sirois, P. J. Med. Chem. 1981, 24, 121. (e) Kido, Y.; Y amaguchi, M. J. Org. Chem. 1998, 63, 8086.

[^3]: a Reaction conditions: cyclic enone or lactone (1.00 mmol),

[^4]: (11) (a) Eisch, J.J.; Galle, J . E.J. Organomet. Chem. 1975, 96, C23. (b) Eisch, J. J.; Piotrowski, A. M.; Han, K. I.; Kruger, C.; Tsay, Y. H Organometallics 1985, 4, 224. For production of a cobaltacyclopentadiene complex, see: (c) Wakatsuki, Y.; Nomura, O.; Kitaura, K.; M orokuma, K.; Y amazaki, H. J . Am. Chem. Soc. 1983, 105, 1907.
 (12) McAlister, D. R.; Bercaw, J . E.; Bergman, R. G. J. Am. Chem. Soc. 1977, 99, 1666.

[^5]: (13) F or production of cobaltacyclopentene complex, see: (a) Wakatsuki, Y.; Aoki, K.; Yamazaki, H. J . Am. Chem. Soc. 1974, 96, 5284. (b) Wakatsuki, Y.; Aoki, K.; Yamazaki, H. J. Am. Chem. Soc. 1979, 101, 1123.
 (14) Grigg, R.; Scott, R.; Stevenson, P. J . Chem. Soc., Perkin Trans. 1 1988, 1357.

[^6]: (15) (a) Colquhoun, H. M.; Thompson, D. J.; Twigg, M. V. Carbonylation; Plenum Press: 1991. (b) Colquhoun, H. M.; Holton, J.; Thompson, D. J .; Twigg, M. V. New Pathways For Organic SynthesisPractical Applications of Transition Metals; Plenum Press: New York, 1988.
 (16) Uhle, F. C.; Krueger, J. E.; Rogers, A. E. J. Am. Chem. Soc. 1956, 78, 1932.

